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Abstract

Flanking structures develop locally around material inhomogeneities. The evolution of these structures is investigated here by modelling
peturbations around a deformable ellipse using a 2D analytical solution. Non-unique instantaneous and finite geometries are predicted, and it
is shown that in terms of slip and curvature, complex histories are possible under simple shear, whereas under pure shear instantaneous geo-
metries map directly into finite state geometries. Single flanking structures are of limited use in kinematic analysis but can help constrain
the kinematics when interpreted in conjunction with other structural features. Flanking structures exhibiting a range of CE (cross-cutting
element) orientations have more potential as kinematic indicators. Flanking structures serve as an excellent example of the role that material
homogeneity can play in locally producing complex structures in a relatively simple bulk flow field.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Flanking structures (Passchier, 2001) have been the focus
of considerable research recently. They were recognised and
described in detail by Gayer et al. (1978) and also by Hudleston
(1989) who outlined the association of folds and veins in shear
zones in both rocks and glaciers as ‘‘paired hook-shaped’’
asymmetric folds displaying a shear sense opposite to that of
the across vein displacement sense. This behaviour is
counter-intuitive and opposite to the effect of fault drag.
Hudleston (1989) recognised that folds may occur as a conse-
quence of fracture development, and that the shapes of folds
depend on the mechanical properties of the fracture infill
over time. More recently Druguet et al. (1997), Zubriggen
et al. (1998) and Grasemann et al. (1999) have described
examples of similar structures. Passchier (2001) synthesised
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these variously named features into a single class termed
‘‘flanking structures’’.

Mulchrone and Walsh (2006) produced an analytical solu-
tion in 2D for the behaviour of a deformable ellipse (i.e. having
a different viscosity to that of the surrounding material) in a gen-
eral 2D homogeneous deformation. In this paper the model of
Mulchrone and Walsh (2006) is simplified and applied to high
axial ratio deformable ellipses in order to model the instanta-
neous and finite geometries of flanking structures. Many of
the equations referred to below are derived in Mulchrone and
Walsh (2006).

1.1. Terminology

At least three terminologies have been applied to flanking
structures in recent times. Passchier (2001) introduced a defor-
mation-independent, purely geometric nomenclature to be ap-
plied to finite (i.e. field) flanking structures. The primary
features are a CE (cross-cutting element) and HE (host ele-
ment) as defined by Passchier (2001). Six different geometric
categories of structure were distinguished based on the relative
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displacement sense between that across the CE and that indi-
cated by the curving of the HE close to the CE (synthetic or
s-Type, antithetic or a-Type and no across CE displacement
or n-Type). Additionally the HE curvature can be described
as fold-like or shear band-like (Fig. 1 and Fig. 7(a) of Passchier,
2001). Grasemann and Stüwe (2001) further divided the HE
into a HEi (the HE within the perturbation zone associated
with the CE) and HEe (the unaffected HE outside the perturba-
tion zone) and distinguished between the rotation of the CE
and that of the material within the CE, termed the CEi. It
should be noted that Grasemann and Stüwe (2001) dealt
with an inclusion of axial ratio 10, therefore the behaviour
of the CEi was an important consideration. Grasemann et al.
(2003) provide a terminology which applies only to a particular
instant in the evolution of flanking structures. For an instanta-
neous flanking structure, CEs may be co-, counter or non-
rotating compared with the bulk sense of shear (3 options),
the displacement sense across a CE may be co- or counter-
shearing again compared with the bulk shear sense (2 options).
Finally, the curvature of the HE indicates convex or normal
drag if the sense of local rotation of the HE is consistent
with that of the displacement across the CE and reverse other-
wise (2 options). This terminology is useful in the context of
modelling but is of limited use in the field (see Coelho
et al., 2005), since the bulk shear sense is unknown in advance.
It leads to 12 possible instantaneous states. Departing from the
original deformation-independent definition of Passchier
(2001), Grasemann et al. (2003) define that s-Type structures
are those with co-shearing CEs coupled with a contractional
sense of offset; a-Type structures have counter-shearing CEs
and shear bands are co-shearing with extensional sense of off-
set (see also Exner et al. 2004). Confusion may be caused if
the different terminologies (finite and instantaneous) are ap-
plied in the wrong context. In particular, the different defini-
tions of s-, n- and a-Type structures as applied in the finite
and instantaneous states are highlighted as a potential source
of confusion (Wiesmayr and Grasemann, 2005). Coelho
et al. (2005) introduced a deformation independent terminol-
ogy based on four parameters tilt, slip, lift and roll. A brief
summary is not possible, so the reader is directed to the orig-
inal paper for details.

1.2. Previous research and results

Passchier (2001) suggested five possible mechanisms for
flanking fold development: (i) CE formed during or after
flanking fold development, (ii) folding associated with active
faulting, (iii) development associated with an alteration rim
around the CE, (iv) enhanced deformation within the CE
due to competency contrast, and (v) passive amplification of
minor perturbations due to vein intrusion. Passchier (2001)
urged caution when using flanking structures as shear sense
indicators.

Grasemann and Stüwe (2001) numerically modelled the de-
velopment of flanking structures using a CE of finite thickness,
initially oriented at 135� to the shear direction, under dextral
bulk simple shear. For CEs less viscous than the HE, they
found that flanking folds, exhibited by the HE, display dextral
shear sense but the displacement across the CE was sinistral,
corresponding to a-Type flanking structures. By contrast,
they found that for highly competent CEs (almost rigid)
n-Type structures develop with dextral flanking folds. Again
Grasemann and Stüwe (2001) urged caution in the use of
flanking structures as kinematic indicators citing modelling
of almost identical structures under pure shear by Baumann
(1986; in Grasemann and Stüwe, 2001). Grasemann et al.
(2003) presented the results of further numerical modelling
where an infinitely thin perfectly slipping line of finite length
is deformed for various initial orientations and transpressional
bulk deformation types. They showed that under a wide range
of kinematic conditions morphologically identical instanta-
neous flanking structures can arise, and that there is a relation-
ship between bulk deformation, CE orientation and the
resulting instantaneous flanking structure. Moreover, they
give guidelines where flanking structures may be of use in un-
ravelling the bulk kinematics of deformation.

Exner et al. (2004) modelled the development of flanking
structures under bulk dextral shear using a ring shear appara-
tus. Their results were in agreement with previous numerical
work but they were also able to track the progressive develop-
ment of initial reverse a-Type flanking structures into n-Type
and then normal s-Type flanking folds as the CE rotates under
simple shear. Kocher and Mancktelow (2005) used the analyt-
ical model of Schmid and Podladchikov (2003) for a high
axial ratio, weak elliptical inclusion to consider the case of
reverse modelling the development of flanking structures in
order to estimate both the vorticity number (Wk) and the
amount of deformation. The only difficulty in applying this
approach is that the orientation of the responsible bulk defor-
mation must be assumed (i.e. for example simple shear
directed along the direction of the HE with or without a
component of HE-perpendicular pure shear). Wiesmayr and
Grasemann (2005) extended the scope of Grasemann et al.
(2003) to include transtensional bulk flow. More recently,
Kocher and Mancktelow (2006) used analytical and numerical
techniques to study the evolution of flanking structures in
anisotropic viscous rock. They found that anisotropy can have
significant effects on the relative frequency of instantaneously
developing flanking structures.

2. Morphology of flanking structures

Interpreting flanking structures in the field in terms of the
bulk kinematics has been demonstrated to be fraught with dif-
ficulties and instantaneous classifications are redundant in the
field. Purely geometric schemes such as those proposed by
Passchier (2001) and Coelho et al. (2005) claim no relation
with the kinematic framework. Furthermore, the six classes
identified by Passchier (2001) can be condensed into three
classes (a-Type, s-Type and n-Type) because the fold-like
and shear band-like are morphologically equivalent (Fig. 1a).
This is because the resulting geometry is purely dependent
on the initial orientational relationship between the CE and
HE. It may be the case that the HE is related to the same
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bulk deformation (e.g. parallels the fabric attractor, Passchier,
1997) which subsequently produces the flanking structure,
however, in the most general case this cannot be assumed a
priori. Although the geometric scheme proposed by Coelho
et al. (2005) is useful as a descriptive measure in the field,
there are problems relating it to bulk kinematics and modelling
results. In most models (such as the one presented below) per-
turbations die off rapidly away from the CE meaning that there
is a scale at which lift tends to zero. Tilt (Coelho et al., 2005)
is a measure of the finite angular relationship between the CE
and the undisturbed HE, which is kinematically meaningless
unless a relationship between the bulk deformation and the
formation of the CE and/or the HE may be assumed in
advance or established. For example, the HE may be of sedi-
mentary origin (i.e. bedding) or of tectonic origin (i.e. foliation)
and may have subsequently rotated in response to deformation,
all prior to the development of the CE and associated flanking
structure. Unless the deformation has remained constant
throughout the history, then assuming a special relationship
between the HE and CE is, in general, unjustified. Slip is equiv-
alent to the across CE displacement and roll refers to the fold-
like or shear band-like geometry. In the context of the model
studied here roll is simplified due to zero lift by contrast with
the complexity of the general case considered by Coelho
et al. (2005). In order to distinguish between the roll parameter

HE

Fold morphology Shear-band morphology
(a)

(b)
X

Y

curvature

dextral
slip

Fig. 1. (a) Schematic illustration of the relationship between deformation and

HE orientation and the resulting morphology, i.e. fold-like or shear band-like.

Whether a fold-like or shear band-like morphology develops depends on the

orientation of the HE with respect to shearing direction. In terms of the kine-

matics both morphologies are equivalent. (b) Sketch of a flanking structure

with the slip and curvature parameters marked. Curvature is the geometric cur-

vature of the HE perturbation adjacent to the CE.
of Coelho et al. (2005) and the reduced sense in which it is used
here, from now on it will be referred to as ‘‘curvature’’.

By concentrating on morphology alone, the absolute shear
sense of the across CE displacement (slip) and that of the HE
perturbation (curvature) are ignored (note that absolute shear
sense may be measurable in the field and is potentially impor-
tant). In this paper, flanking structures are classified according
to slip and curvature, where curvature is measured adjacent to
the CE. Depending on whether or not absolute shear senses are
used in the classification, there is a geometric type and a spe-
cific type.

Following the coordinate system definition of Coelho et al.
(2005), slip may be positive, negative or zero (assigned the sym-
bolsþ,� or 0) and curvature may be under, over or neutral (as-
signed the symbolsþ,� or 0). The symbols assigned to the roll
parameter correspond to the sign of concavity (Fraleigh, 1990, p.
211) of the perturbed HE. This leads to nine possibilities, sche-
matically illustrated in Fig. 2, which are named using the pairing
(slip, curvature) giving: (þ,þ), (0,þ), (�,þ), (þ,0), (0,0), (�,0),
(þ,�), (0,�), (�,�) geometric types. This is a purely geometric
descriptive scheme which does not assume a special relationship
between either the HE or CE and the kinematic frame.

A classification based on absolute shear sense is useful in in-
terpreting specific examples and model output. Therefore, a spe-
cific type is also defined by assigning the symbols d, s and n to
slip and curvature corresponding to dextral, sinistral or none
leading to nine possibilities. Fig. 2 also schematically illustrates
the nine possibilities which are named according to (slip, curva-
ture) giving (s,s), (s,n), (s,d), (n,s), (n,n), (n,d), (d,s), (d,n) and
(d,s) specific types. In the next section, and beyond, a mathemat-
ical definition of how to calculate the slip and curvature param-
eters in both the finite and instantaneous states is introduced.

3. Theory

Mulchrone and Walsh (2006) derived a solution for the
motion of an ellipse with a different viscosity to that of the

negative (-)zero (0)positive (+)

slip

roll
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Fig. 2. Cartoon of the nine geometric and specific types of flanking structures

possible, classified according to slip and curvature (noting that in theoretical

models the lift is zero). Question marks indicate impossible situations accord-

ing to the model developed here (i.e. slip without curvature).
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surrounding material assuming Newtonian behaviour inside
and outside the ellipse. In their Fig. 14 they demonstrated
that the model could be used to reproduce features commonly
associated with flanking structures. The full solution is com-
plex but it can be reduced considerably in order to understand
the relationship between the features of flanking structures and
the bulk deformation environment. There are two critical fea-
tures of flanking structures that can be observed in the field: (i)
the sense of displacement across the cross-cutting element
(CE) termed slip and denoted by SCE, and (ii) the sense of
shear indicated by the adjacent flanking perturbations termed
curvature and denoted by SF. In this section a theory is devel-
oped which can be used to test if it is possible to make some
inference about the type of bulk deformation field which lead
to a particular flanking structure without prior assumptions.

Analysis of the full model of Mulchrone and Walsh (2006)
can be vastly simplified by considering the situation relative
to the ellipse where the x-axis of the reference frame parallels
the ellipse long axis a, the y-axis parallels the ellipse short
axis b. Furthermore, if only the variation of the x-component
of velocity in the y-direction (i.e. vvx=vy) is investigated, then
the equations simplify even further. This simplification is justi-
fied because the instantaneous slip (SCE) depends only on the
sign of vvx=vy at that instant and likewise the instantaneous cur-
vature (SF) is a function of vx. Moreover, flanking structures tend
to form around high aspect ratio discontinuities such that the
perturbations of vy are small when compared with those of vx.
Obviously, if the instantaneous slip changes over time then
the finite slip will be different to the instantaneous slip at
some stage during the evolution of the structure (e.g. Exner
et al., 2004). Therefore, it is important to ascertain whether or
not such changes are likely to occur during the evolution of
a particular flanking structure. Because flanking structures de-
velop due to the presence of a structural or material discontinu-
ity during bulk deformation, the shear sense of the bulk
deformation given by the x-component of the bulk velocity field
with respect to the ellipse reference frame is also of interest and
is referred to as SB (although this is not measurable in the field).
to simplify the mathematics and also to facilitate discussion of
instantaneous slip and curvature. If the direction of positive x,
in the ellipse reference frame, is defined such that vx

(B)� 0
(Fig. 3), then the frame is independent of absolute shear sense
similar to that of Coelho et al. (2005). This also implies that
SB� 0, by definition.

The bulk deformation with respect to some suitable fixed
reference frame is characterised by the velocity gradient tensor
(L0) which becomes L with respect to the ellipse reference
frame. Placing the origin at the center of the ellipse and
considering vx along the y-axis (i.e. x¼ 0) then we have
from Mulchrone and Walsh (2006) that the external velocity
ðvðeÞx Þ, valid only for y� b, is:

X

Y

Perturbed Velocity

Un-perturbed
(bulk) velocity

vx

Fig. 3. The x-component of the velocity field along a section normal to the

long axis of the CE. Due to velocity continuity at the boundary, there is a re-

striction on the possible instantaneous configurations of slip and curvature.

Thickness of the ellipse is exaggerated for clarity.
vðeÞx ¼
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��
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�
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�
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��
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�
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�
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ð1Þ
As shown in Fig. 3 the perturbed velocity field due to the pres-
ence of the ellipse differs greatly from the bulk deformation
field close to the ellipse but asymmtotically approaches the
bulk velocity field far from the ellipse (Grasemann et al.,
2005). Before investigating potential instantaneous configura-
tions, equations for theoretically evaluating SCE, SF and SB are
written. In the treatment below, R ¼ a=b, the axial ratio of the
ellipse and mr is the ratio of the external to internal viscosities.

The coordinate system of Coelho et al. (2005) differs from
that defined with respect to the ellipse above. This is necessary
whereas the internal velocity ðvðiÞx Þ, valid only for y� b is
given by:

vðiÞx ¼ y

�
L12ð1þmrRðRþ 2ÞÞ þ L21R2ðmr � 1Þ

1þ 2Rmr þR2

�
ð2Þ

and the bulk (i.e. unperturbed) velocity (vx
(B)) is:

vðBÞx ¼ yL12 ð3Þ
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When the material discontinuity disappears (i.e. mr/1, then
v
ðeÞ
x /v

ðBÞ
x ) and when y¼ b then v

ðeÞ
x ¼ v

ðiÞ
x .

SF can be determined using the second derivative, i.e. con-
cavity (Fraleigh, 1990, p. 211), as is standard practice in ana-
lytic geometry:

v2vðeÞx

vy2
¼ 3b4ðL12þ L21ÞR3ðmr � 1Þð1þRÞ2�

R2 þ 2mrRþ 1
��

y2þ b2ðR2 � 1Þ
�5=2

ð4Þ

It is the sign of this expression which determines the instanta-
neous roll and it can be simplified further by evaluating it at
the boundary of the ellipse, i.e. y¼�b:

v2vðeÞx

vy2

����
y¼b

¼ 3ðL12 þ L21Þðmr � 1Þð1þRÞ2

bR2
�
R2þ 2mrRþ 1

� ð5Þ

By noting that R� 1, mr� 0 and b> 0 then:

SF ¼�sign

�
v2vðeÞx

vy2

�
¼�signððL12þ L21Þðmr � 1ÞÞ ð6Þ

where a positive value implies a concave up curve (corre-
sponding to under-roll, þ) and vice versa for a negative value.
It is important to note that defining the instantaneous curva-
ture exhibited by flanking structures in this way removes
the potential ambiguity originating from the impact of the
initial relationship between the HE and the CE (i.e. see
Fig. 1, the description of shear band or fold-like HE structures
is not important, instead the indicated sense of concavity is
recovered).

SCE is determined from the sign of vv
ðiÞ
x =vy:

SCE ¼ sign

�
vvðiÞx

vy

�
¼ sign

�
L12ð1þ mrRðRþ 2ÞÞ þ L21R2ðmr � 1Þ

�
ð7Þ

and SB is determined from the sign of vv
ðBÞ
x =vy:

SB ¼ sign

�
vvðBÞx

vy

�
¼ signðL12Þ ð8Þ

(noting that our reference frame is choosen to make SB� 0).
The relationship between L and L0 is due to the angle

(f) the long axis of the ellipse makes with the positive
x-axis of the fixed reference frame (see Mulchrone et al.,
2005)

L¼ RL0RT ð9Þ

where R is the rotation matrix and superscript T means
transpose:

R¼
�

cosf sinf

�sinf cosf

�
ð10Þ
and noting that L0ii ¼ 0 for isochoric flow:

L11 ¼
1

2

�
2L011cosð2fÞ þ

�
L012 þ L021

�
sinð2fÞ

	
L12 ¼

1

2

�
L012 � L021þ

�
L012 þ L021

�
cosð2fÞ � 2L011sinð2fÞ

	
L21 ¼

1

2

�
L021 � L012þ

�
L012 þ L021

�
cosð2fÞ � 2L011sinð2fÞ

	
L22 ¼�

1

2

�
2L011cosð2fÞ þ

�
L012 þ L021

�
sinð2fÞ

	
ð11Þ

By substituting from Eq. (11) into Eqs. (6e8), SCE and SF can
be studied as a function of the bulk deformation, ellipse orien-
tation and the viscosity contrast.

Without doing any mathematical analysis it is possible to
determine graphically that there are six distinct instantaneous
shear sense configurations possible (see Fig. 4, note the ellip-
tical CE is not included for the sake of clarity). In terms of our
earlier classification the cases are: (�,�), (0,�), (þ,�), (þ,0),
(þ,þ) and (0,0). Each case can be distinguished purely on the
instantaneous values of SCE and SF. The (0,0) case is not illus-
trated in Fig. 4.

4. Results

4.1. Pure shear

In the case of pure shear L012 ¼ L021 ¼ 0 and arbitrarily
choosing L011 ¼ 1 (positive stretching along the x-axis) then:

SB ¼�signðsinð2fÞÞ ð12Þ

SCE ¼�signðð1þRð2mr � 1ÞÞsinð2fÞÞ ð13Þ

SF ¼ signððmr � 1Þsinð2fÞÞ ð14Þ

These expressions have been simplified by using the fact that
R� 1 and mr� 0 and eliminating terms that do not affect the
sign. From SB the bulk flow shear sense is dextral for f< 0
and sinistral for f> 0. However, from the ellipse reference
frame definition given earlier, SB� 0. Slip for the CE is more
complicated but the sub-expression ð1þ Rð2mr � 1ÞÞ is positive
when mr > ðR� 1Þ=2R and negative otherwise. For mr >
ðR� 1Þ=2R, SCE behaves just like SB, whereas the direct oppo-
site occurs for mr < ðR� 1Þ=2R, i.e. more rigid elements.
Note that ðR� 1Þ=2Rz1=2 for large R. Finally SF depends on
whether the element is more or less competent than the surround-
ing material. For mr> 1, SF behaves like SB but the opposite
occurs for mr< 1. At f¼ 0 or �p=2 giving SB¼ SCE¼ SF¼ 0,
corresponding to the (0,0) geometric type. Using this analysis
behaviour can be subdivided into six distinct types based on
Eqs. (12e14), which depend primarily upon the values of mr

and f (see Table 1 and Fig. 5), however, only four instantaneous
geometric types are possible: (0,0), (�,�), (þ,�) and (þ,þ).

It is noted that an element with a positive angle can never have
attain a negative angle or vice versa due to the dynamics of the
motion of deformable ellipses (i.e. they cannot rotate through
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the zero direction). Hence the instantaneous flanking geometry
remains constant (i.e. with respect to the signs of slip and
curvature) during the evolution of the structure so that the instan-
taneous classification also applies to the finite situation.

4.2. Simple shear

4.2.1. Instantaneous state
By arbitrarily choosing a bulk dextral shear by taking L011 ¼

L021 ¼ 0 and L012 ¼ 1 then:

vx

Y

Perturbed Velocity

Un-perturbed
(bulk) velocity

y=b

y=-b

Y

y=b

y=-b

Y

y=b

y=-b
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Y
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(+,-)  (d,d)

(0,-)  (n,d)
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Fig. 4. Five geometric and specific types of instantaneous velocity profiles,

(�,�), (0,�), (þ,�), (þ,0) and (þ,þ), the bulk velocity is denoted by the

dashed line. There is one additional case (0,0) when the bulk velocity is zero.
SB ¼ ½signðcosð2fÞÞ�2 ð15Þ

SCE ¼ sign
��

R2þ 2mrRþ 1
�
þ ðRþ 1Þ

� ð1þRð2mr � 1ÞÞcosð2fÞ
�

ð16Þ

Table 1

Instantaneous geometric types under pure shear, classified according to viscos-

ity ratio and orientation

Geometric type Specific type f mr SB SCE SF

(þ,þ) ds >0



0;
ðR� 1Þ

2R

�
S D S

(�,þ) ss >0



ðR� 1Þ

2R
; 1

�
S S S

(�,�) sd >0 >1 S S D

(�,�) sd <0



0;
ðR� 1Þ

2R

�
D S D

(þ,�) dd <0



ðR� 1Þ

2R
; 1

�
D D D

(þ,þ) ds <0 >1 D D S

(0,0) nn ¼0 Any N N N

dextral rotation

sinistral rotation

r=0.3

r=0.7
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Fig. 5. CE is represented as an ellipse (axial ratio is low in the context of flank-

ing structures but is necessary for exposition). The heavy line denotes the per-

turbed velocity profile whereas the dashed line represents the bulk velocity

profile. Under pure shear there are six possible instantaneous cases depending

on the orientation of the CE and the viscosity ratio. Note that these collapse

into three geometric types.
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Table 2

Instantaneous geometric types under dextral simple shear, classified according to viscosity ratio and orientation

Geometric type Specific type Bulk sense f mr SB SCE SF

(þ,þ) ds D �p

4
< f <

p

4
>1 D D S

(�,�) sd D f < f�kf > fþ >1 D S D

(þ,�) dd D f� < f < �p

4

���p

4
< f < fþ >1 D D D

(þ,�) dd D �p

4
< f <

p

4
<1 D D D

(þ,þ) ds D
p

4
< jfj <1 D D S

(0,0) nn D ¼ �p

4
N N N

(�,�) sd S �p

4
< f <

p

4
>1 S S D

(þ,þ) ds S f < f�kf > fþ >1 S D S

(�,þ) ss S f� < f < �p

4

���p

4
< f < fþ >1 S S S

(�,þ) ss S �p

4
< f <

p

4
<1 S S S

(�,�) sd S
p

4
< jfj <1 S S D

(0,0) nn S ¼ �p

4
N N N
SF ¼�signððmr � 1Þcosð2fÞÞ ð17Þ

It is clear that SB� 0, i.e. reflecting a synthetic dextral shear
sense independent of orientation. Also SB¼ SCE¼ SF¼ 0
when f ¼ �p=4, corresponding to the (0,0) type.

The expression for SCE is complex but can be broken into
three parts as follows:

SCE ¼ signðAþBCÞ ð18Þ

where A ¼ ðR2 þ 2mrRþ 1Þ; B ¼ ðRþ 1Þð1þ Rð2mr � 1ÞÞ
and C ¼ cosð2fÞ. A is always positive since R� 1 and
mr� 0. B> 0 when mr > ðR� 1Þ=2R and B< 0 otherwise.
On the range �p=2 < f < p=2 then C> 0 when �p=4 < f

< p=4 and C< 0 otherwise. If B and C have the same sign
then Aþ BC> 0 and SCE> 0, i.e. a synthetic dextral displace-
ment sense. This occurs when mr > ðR� 1Þ=2R and �p=4 < f

< p=4 or mr < ðR� 1Þ=2R and p=4 < jfj. Two remaining
possibilities are that (i) mr > ðR� 1Þ=2R and p=4 < jfj and
(ii) mr < ðR� 1Þ=2R and �p=4 < f < p=4. In case (i)
Aþ BC< 0 when mr> 1 and:

f< f� ¼ �1

2
sec�1

�
� ðRþ 1Þð1þRð2mr � 1ÞÞ

R2þ 2mrRþ 1

�
<�p

4
ð19Þ

or

f> fþ ¼ 1

2
sec�1

�
� ðRþ 1Þð1þRð2mr � 1ÞÞ

R2þ 2mrRþ 1
>

p

4

�
ð20Þ

representing a synthetic dextral displacement sense. In case (ii)
Aþ BC> 0 and SCE> 0. The preceding analysis may be sum-
marised as SCE< 0, i.e. sinistral only when mr> 1 and Eqs. (19)
or (20) hold, in all other cases SCE> 0, i.e. dextral. As regards
fold curvature, SF> 0 when (i) mr> 1 and p=4 < jfj and (ii)
mr< 1 and �p=4 < f < p=4, in all other cases SF< 0.
There are six possible instantaneous flanking types under
dextral simple shear, however, this becomes 12 when the
case of a sinistral bulk simple shear is included (see Table 2).
From a purely geometric perspective there are only four types
in total, namely: (0,0), (�,�), (þ,�) and (þ,þ). Five cases

Bulk shear sense

(+,+) (-,-)

(+,-) (+,-)

(+,+)

( (=2.0)

(d,s) (s,d)

(d,d) (d,d)

(d,s)

( =2.0)

=2.0)

( =0.5)

( =0.5)

Fig. 6. Five of the six possible types of instantaneous configurations under dex-

tral simple shear. Orientations of the CE are selected according to the analysis

given in the text and the ranges given in Table 2.
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under bulk dextral simple shear are illustrated in Fig. 6 (the
(0,0)-type is not shown).

4.2.2. Finite state
By contrast with pure shear, under simple shear objects

may rotate from one instantaneous flanking state to another
(Exner et al., 2004; Mulchrone and Walsh, 2006). Therefore,
instantaneous states do not automatically map to finite geom-
etries. To further investigate the possibilities, the analysis of
Mulchrone and Walsh (2006) is considered. They demon-
strated that under bulk simple shear the axial ratio (R) and ori-
entation (f) of an elliptical inclusion behaves according to the
following differential equations:

df

dt
¼

L012

�
ðRð2mr � 1Þ þ 1Þcos2f�R2ðRþ 2mr � 1Þsin2f

	
ðR� 1Þ

�
R2þ 2mrRþ 1

�
ð21Þ

dR

dt
¼ L012mrRðRþ 1Þ2sinð2fÞ

2mr

�
R2 þ 1

�
þ 2R

ð22Þ

Additionally, objects tend to rotate towards and away from the
following curves, respectively, in (R, f) space:

f¼�cos�1

 
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 2mr � 1

ðRþ 1Þ
�
R2 þ 2ðmr � 1Þ þ 1

�
s !

ð23Þ

Mulchrone and Walsh (2006) showed that for mr < 1=2 the
two curves (i.e. the þ and � parts) coalesce to form one curve
and otherwise exist as two distinct curves. The long-term
behaviour of an elliptical inclusion is governed by the initial
position (i.e. shape and orientation) of the inclusion with re-
spect to these curves. By taking the cosine of both sides in
Eq. (23) and rearranging we find that:

JðR;fÞ ¼ R

cosf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rþ 2mr � 1

ðRþ 1Þ
�
R2 þ 2ðmr � 1Þ þ 1

�
s

¼ 1 ð24Þ

An inclusion with initial state ðR0;f0Þ is fully enclosed by the
curve if mr < 1=2 and JðR0;f0Þ < 1. If mr � 1=2, then the
inclusion lies between these curves if JðR0;f0Þ < 1 (see
Fig. 7). This simplifies the analysis considerably, although ref-
erence should be made to both Fig. 7 and Table 2 when read-
ing the next few paragraphs for clarity.

For mr<1=2, there are two possible cases. Firstly JðR0;f0Þ
< 1, in which case the orientation of the inclusion can never
get outside the range �p=4 < f < p=4 and the instantaneous
and finite geometries will match (e.g. for bulk dextral shear the
inclusion will always be type (þ,�)). Secondly JðR0;f0Þ � 1,
and inclusions can continuously rotate through 180�, therefore
attaining all possible orientations if deformation persists for
long enough. Focusing on the case of bulk dextral shear and
with reference to Table 2, it is clear that only SF changes sense
as the inclusion fully rotates.

For mr � 1=2, there are three possible cases. Firstly
JðR0;f0Þ < 1, in which case the orientation of the inclusion
can never get outside the range �p=4 < f < p=4. Therefore,
under a bulk dextral shear sense if 1=2 � mr < 1, the finite
type will be (þ,�) whereas for mr> 1, it will be (þ,þ). Sec-
ondly JðR0;f0Þ � 1 and 0 < f � p=2, then the CE will rotate
synthetically and asymptotically into parallelism with the pos-
itive curve of Eq. (23). If the subset 1=2 � mr < 1 and f0 >
p=4 is considered under dextral shear the inclusion will pass

Fig. 7. Phase diagrams for the evolution of a deformable ellipse under bulk

dextral simple shear. For a given value of (R, f) the path taken (i.e. how R
and f change over time) can be judged by following the arrows. Solid lines

are example paths. Note closed loops in center of (a), which surround the sin-

gle fixed point occurring for mr< 0.5. Note also in (b) and (c) that lines tend to

converge on lines emanating from close to �45�; these curves correspond to

Eq. (23).
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from instantaneous type (þ,þ) to (þ,�) and note that only SF

changes sense. For mr> 1, inclusion can rotate from instanta-
neous type (þ,�) to (�,�) to (þ,þ) or just from (�,�) to
(þ,þ) depending on f0, noting that both SCE and SF change
sign in this case. Thirdly JðR0;f0Þ > 1 and �p=2 � f <
0, in which case inclusions can have complex paths. For 1=2
� mr < 1, inclusions may start out in instantaneous type dd
ðf0 > �p=4Þ and rotate into ds ðf < �p=4Þ and finish up
in dd ðf < p=4Þ. On the other hand if mr> 1 inclusions
may begin in an instantaneous type ds ðf0 > �p=4Þ and rotate
into dd ðf� < f < �p=4Þ followed by sd (f< f� and
f> fþ) then back into dd ðp=4< f< fþÞ and finally entering
ds ðf< p=4Þ. The result of such complex paths are clearly illus-
trated by the analogue modelling of Exner et al. (2004) where
a reverse a-Type flanking fold evolves into an n-Type and
then a normal s-Type flanking fold under dextral simple shear.

Although it is not possible to derive analytical solutions for
complex behaviours (due to there being no analytical solution
for the behaviour of f and R), it is possible to numerically
evaluate the resultant morphology at any given time. This
involves numerically solving Eqs. (73 and 77) of Mulchrone
and Walsh (2006) together with expressions for either
ðv2v
ðeÞ
x =vy2Þjy¼b (to get the finite value of SF) or vv

ðiÞ
x =vy (to

get the finite value of SCE). The instantaneous curvature can
be readily calculated by applying the numerically calculated
values for f and R to Eq. (5), however, the cumulative curva-
ture is calculated by taking the integral:

Z t

0

v2vðeÞx

vy2

����
y¼b

dt

As an example, the experiment of Exner et al. (2004) is
modelled by letting fð0Þ ¼ 90�; að0Þ ¼ 50; bð0Þ ¼ 1 and
mr¼ 40 (an extremely weak inclusion with long axis a and
short axis b). As shown in Fig. 8 the results from the model
are remarkably similar to the experimental result. Comparing
the graph of the CE orientation (Fig. 8a) with the experimental
one in Fig. 7(b) of Exner et al. (2004) the curves are similar in
shape and values. The graph of the offset (Fig. 8c) is remark-
ably similar to Fig. 7(a) of Exner et al. (2004) as regards
values and the shear strain at which the point of no offset
(g z 2.3) is reached. Furthermore, the model predicts a qua-
drupling of the length of CE (Fig. 8b) and even though the
Fig. 8. Evolution of instantaneous states to give a finite geometry. Initial conditions are að0Þ ¼ 50; bð0Þ ¼ 1 and mr¼ 40. All variables are plotted against the finite

shear strain. Interesting features to note are the slip which varies from sinistral to dextral with a point of no slip at a shear strain of 2.3 (approx.) in agreement with

Exner et al. (2004). Also the curvature of instananeously changes from dextral to sinistral at a shear strain of 1.0 but the cumulative curvature is dextral throughout.
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instantaneous curvature predicts a switch from dextral to sinis-
tral at g¼ 1, the cumulative curvature remains dextral
throughout (i.e. the strength of the reverse instantaneous cur-
vature is not enough to reverse the overall sense of curvature).
Fig. 9 illustrates the behaviour predicted by the model for al-
ternative initial orientations. Between 0� and 50� and for 170�

and 180�, the displacement sense across the CE is synthetic.
Between 60� and 130� there is a progressively increasing
zone of initial antithetic displacement followed by a point of
no displacement after which synthetic displacement occurs.
For 140� and 150� there are two points of no-displacement
representing crossover from synthetic to antithetic and back
again to synthetic displacement sense (this is consistent with
our earlier instantaneous considerations). The cumulative cur-
vature also displays interesting behaviour as the initial

Fig. 9. A detailed look at the relationship between initial orientation of the CE

and the eventual slip. Note the complex behaviour with two points of no total

slip for certain orientations. Initial conditions are the same as those for Fig. 8.
orientation varies (see Fig. 10). For the range of shear strain
studied synthetic curvature is expected for initial orientations
of 80�e140�, whereas antithetic curvature occurs for 0�e40�

and 170�. Initial orientations of 50�e70� begin synthetic but
change to antithetic as the structure evolves. Conversely, for
150� and 160� the curvature is initially antithetic but becomes
synthetic over time.

The model can also be used to evaluate the behaviour of
strong inclusions, i.e. mr< 1. In this case (see Fig. 11) the off-
set across the CE is always synthetic and maximum offset oc-
curs for orientations closest to the shear direction. By contrast
the cumulative curvature varies with initial orientation as well
as during the evolution of the structure. For f0 between 0 and
40 and 170 the curvature is synthetic. For f0 equal to 50 or 60
the initial curvature is antithetic but becomes synthetic over
time. For f0 between 70 and 130, the curvature is antithetic
and for f0 between 140 and 160, the curvature begins syn-
thetic but becomes antithetic over time.

5. Discussion

The analysis presented above is consistent with previously
published experimental and analogue modelling studies
(Grasemann and Stüwe, 2001; Grasemann et al., 2003; Exner
et al., 2004; Wiesmayr and Grasemann, 2005; Kocher and
Mancktelow, 2005). Caution has been urged from the outset
when using flanking structures as kinematic indicators
(Passchier, 2001), a theme reiterated elsewhere (e.g. Grasemann
et al., 2003; Wiesmayr and Grasemann, 2005). The analysis
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Fig. 10. Cumulative curvature behaviour as a function of initial CE orientation.

Initial conditions are the same as those for Fig. 8.
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Fig. 11. Finite behaviour of a strong inclusion (að0Þ ¼ 50; bð0Þ ¼ 1 and mr¼ 0.75) for different intial CE orientations.
presented here tends to reaffirm this caution. It has been shown
that in the absence of a priori assumptions regarding (i) a rela-
tionship between the HE and the deformation producing the
flanking structure, (ii) the initial relationship between the
HE and CE, or (iii) the orientation of the bulk kinematics of
deformation (i.e. considering only the field measurable vari-
able of slip and roll), flanking structure geometry in itself is
not enough to establish the bulk kinematics (for example there
is no instantaneous type unique to either pure shear or simple
shear). There is one exception and that is the case of zero slip
which cannot occur under pure shear, with the exception of
a CE which is initially parallel to the stretching axes, in which
case curvature (or roll) should not occur either. Extracting in-
formation from flanking structures using reverse modelling
(Kocher and Mancktelow, 2005) is of potential use in distin-
guishing possible kinematic frameworks and finite strains, al-
though assumptions regarding the orientational relationship
between the HE and the bulk flow must be made at the outset.
The approach to estimate the finite slip and curvature, pre-
sented above, may provide a means of relaxing this constraint
whereby it is computationally efficient to reverse model flank-
ing structure development by exhaustively testing different
HE, CE and bulk kinematic arrangements.

Using flanking structures to estimate bulk kinematics is dif-
ficult unless some assumptions are made and in many cases
this is a reasonable approach. It becomes easier in cases where
coeval flanking structures of different initial orientations occur
(Wiesmayr and Grasemann, 2005). The author came across
a suitable example in the Western Gneiss Region of west cen-
tral Norway (see Mulchrone, 2002, for a discussion of back-
ground geology). In a fairly homogeneous, but well foliated
gneissic unit, two sets of shear zones with leucosome lying
along their length were identified and are shown in Fig. 12.
Whether leucosome development preceded shear zone nucle-
ation or vice versa is a moot point, however, the intimate rela-
tionship between the two supports a coeval interpretation of
the two shear zone sets and it is highly likely that the shear
zones nucleated due to material inhomogeneities. Both shear
zone sets can be classified as specific type (d,d), even though
they make different angles with the foliation. From the analy-
sis of the pure shear situation, it is impossible to produce this
geometry under bulk pure shear. However, a simple shear or
simple shear dominated kinematic regime adequately explains
the geometry. Even though it is tempting to interpret the un-
perturbed HE direction as the shear direction, there is consid-
erable flexibility regarding the actual orientation of the bulk
deformation, whilst at the same time explaining the observed
geometry (in this case the HE existed prior to the deformation
producing the flanking structures and so may or may not
be kinematically related). Although this interpretation could
be achieved using intuition, flanking structures and the model
developed here provide a consistent theoretical framework for
explaining structures around high aspect-ratio heterogeneities.

Flanking structures can play an active role in unravelling
deformation history. They can be used to constrain possible
deformation regimes or to provide a test for proposed regimes
based on interpretations inferred from other structural features.
Unravelling the history of individual flanking structures can
help in determining the sequence of events during deforma-
tion. Additionally, they are an excellent example of how mate-
rial inhomogeneities serve as nucleation sites for structural
development and provide insight into how different (at first
glance, contradictory) structures can evolve locally in a single
deformation event. Taking this insight to the map scale
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Fig. 12. Two shear zone sets present in a homogeneous gneiss unit in west central Norway along with interpretation and schematic illustrations.
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(Wiesmayr and Grasemann, 2005), particularly in high grade
terrains lacking stratigraphic control, might help in explaining
map-scale patterns.

6. Conclusions

It has been demonstrated that the analytical model of
Mulchrone and Walsh (2006) can be applied to the study of
flanking structures. Instantaneous states are dependent on the
CE orientation, viscosity contrast and bulk deformation re-
gime. Instantaneous states map directly to finite states in the
case of pure shear. However, it was shown that both slip and
roll can reverse sense (once or more) in the case of a simple
shear deformation. Therefore, the final geometric form can
potentially mask a complex history. The geometric form of
a single flanking structure is not enough to tightly constrain
the kinematics of the responsible deformation (Kocher and
Mancktelow, 2005). In combination with some assumptions
or inferences based on other structural evidence, flanking
structures can serve to constrain or at least test such
interpretations.
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